The generator matrix 1 0 1 1 1 X^2+X 1 1 0 1 1 X^2+X 1 1 0 X^2+X 1 1 1 1 0 1 1 0 X^2+X X 1 1 1 1 0 X^2 1 1 1 X^2+X 1 1 0 X^2+X 1 1 1 1 1 1 1 X^2+X X 1 X^2 1 1 0 1 1 X^2+X 1 1 1 1 X 1 X 1 0 1 X+1 X^2+X 1 1 0 X+1 1 X^2+X X^2+1 1 0 X+1 1 1 X^2+X X^2+1 X^2+1 X^2+X 1 X+1 0 1 1 1 X+1 0 X^2+X X^2+1 1 1 X+1 X^2+X+1 0 1 0 X 1 1 X^2+X X^2+1 X+1 X^2+X+1 X^2+X X X^2+1 1 1 X^2+1 1 X^2+1 X^2+X X X^2 X 1 X^2+X X^2+X+1 X^2 X^2+X+1 1 X^2+X 0 0 0 0 X^2 0 0 0 0 0 0 0 0 X^2 0 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 0 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 0 0 0 X^2 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 X^2 X^2 0 0 X^2 0 0 0 0 0 0 0 0 0 0 X^2 0 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 0 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 X^2 0 X^2 X^2 0 X^2 X^2 0 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 X^2 0 X^2 0 0 0 0 X^2 0 0 0 0 0 0 0 0 X^2 0 0 0 0 X^2 X^2 0 0 X^2 X^2 X^2 0 X^2 X^2 X^2 0 X^2 0 0 0 X^2 X^2 0 0 0 0 0 X^2 0 0 0 X^2 0 X^2 0 0 X^2 X^2 X^2 X^2 0 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 0 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 0 X^2 0 0 X^2 X^2 0 0 0 0 X^2 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 X^2 X^2 X^2 0 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 X^2 0 0 0 0 X^2 0 X^2 X^2 0 X^2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X^2 0 X^2 0 0 X^2 X^2 0 X^2 0 X^2 0 0 X^2 0 0 0 X^2 X^2 0 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 0 0 X^2 X^2 X^2 0 X^2 X^2 X^2 0 0 X^2 0 0 0 0 0 X^2 X^2 0 X^2 X^2 X^2 0 0 X^2 0 0 0 0 0 0 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 0 0 0 X^2 0 X^2 0 X^2 0 X^2 0 X^2 0 0 X^2 X^2 X^2 0 0 X^2 X^2 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0 X^2 0 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0 0 generates a code of length 65 over Z2[X]/(X^3) who´s minimum homogenous weight is 56. Homogenous weight enumerator: w(x)=1x^0+78x^56+10x^57+98x^58+130x^59+233x^60+256x^61+345x^62+380x^63+358x^64+352x^65+358x^66+336x^67+316x^68+348x^69+186x^70+164x^71+30x^72+54x^73+27x^74+14x^75+3x^76+4x^77+3x^78+5x^80+2x^82+2x^86+3x^90 The gray image is a linear code over GF(2) with n=260, k=12 and d=112. This code was found by Heurico 1.16 in 0.996 seconds.